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Abstract
The phenomenon of electron channeling in a crystal affected by dislocations is considered.
Earlier we had considered the quantum aspects of the positron channeling in a crystal bent by
dislocations where the effects of longitudinal motion of the particle were also considered along
with the transverse motion. In this paper, the effective potential for the electron case is found
for the two regions of dislocation-affected channel. There is considerable shift in the potential
minima due to dislocations. The frequency and the corresponding spectrum of the channeling
radiation due to electrons channeling through the perfect channel and the two regions of
dislocation-affected channels are calculated. The spectral distribution of radiation intensity
changes with the parameters of dislocation. The continuity of wavefunctions and their
derivatives is used at the three boundaries and the reflection and transmission coefficients are
found using these boundary conditions in the same way as in the positron case.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Emission of channeling radiation by relativistic e+ and e−
are of great importance in atomic physics and accelerator-
based research and was a matter of discussion from the very
beginning. But the observation of this radiation appeared to
be precluded since the oscillatory frequencies of the channeled
particles are low, the corresponding energies being of the order
of a few eV only. However, the realization that relativistic
effects will shift the photon energy into the keV or even MeV
region for MeV and GeV positrons and electrons, respectively,
was a turning point. The radiation was reported for the first
time back in 1979. Thereafter, channeling radiation has been
investigated and reviewed by several authors [1–12].

One of the main applications of ion channeling is defects
studies. The effects of defects on charged particle propagation
were an area of research for a long time with some experiments
to explore their application [5]. The classical description of the
dislocation effects on the channeling of positrons in the planar
and axial cases [6] gave an idea of the effects on the energy loss
mechanism. A quantum mechanical treatment of the effects of
dislocation on dechanneling was given later [7].

Previously we have developed a quantum mechan-
ical model for the effects of dislocations on positron

1 Author to whom any correspondence should be addressed.

channeling [13], considering both transverse and longitudinal
motion of particles. Here, we consider the effects of disloca-
tions on planar channeling of electrons. Both the transverse
and longitudinal motion of the particles are considered. The
change in energy spectrum and the spectral distribution of
intensity of the emitted radiation due to dislocations are
investigated for the first time.

2. Effects of dislocations on electron channeling

Just like in the previous case [13], we consider a typical
channel at some distance from the dislocation core, outside the
dechanneling cylinder [7]. The model is shown in figure 1. The
whole channel is divided into four regions. The dislocation-
affected parts of the channel are regions II and III. Here ρ0

corresponds to the radial coordinate of the channel center as
measured from the origin and ϕ0 is the corresponding angular
coordinate.

The Schrödinger equation for planar channeling for a
particle of mass m moving in region I (perfect channel) can
be written as

− h̄2

2m

(
∂2

∂x2
+ ∂2

∂z2

)
� I(x, z) + U(x)� I(x, z) = E I� I(x, z).

(1)
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Figure 1. The model.

For an electron

U(x) = − V0

x + aT
(2)

where
V0 = 2π Z1 Z2e2 NdpCa2

T (3)

where C is the Lindhard’s constant (=√
3), aT is the Thomas–

Fermi screening distance:

aT = 0.8853a0

Z 2/3
1 + Z 2/3

2

(4)

a0 is the Bohr radius, Z1 and Z2 are the atomic numbers of the
incident ion and target atoms, respectively, Ndp is the planar
density of atoms, N being the bulk density of atoms in the
crystal and dp the interplanar spacing.

After separation of variables, the total wavefunction for
region I becomes

� I(x, z) = X I
n(x − x0)Z I(z) (5)

where x0 is the initial amplitude of the channeled electron.
Considering the effects of transverse states, the above equation
can be written as

� I(x, z) = A0 X I
0eik0 z +

∑
n=0

Bn X I
ne−ikn z . (6)

Now consider the two regions in the channel which are
affected by dislocation. These curved regions are due to the
centrifugal force proportional to μ2

ρ2 , where μ2 = l(l + 1) with
l as the orbital angular momentum quantum number and ρ is
the radius of curvature of the channel.

The Schrödinger equation for region II in terms of the
polar coordinates ρ and ϕ is

− h̄2

2m

[
1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+ 1

ρ2

∂2

∂ϕ2

]
� II(ρ, ϕ)

− V0

(ρ − ρ0) + aT
� II(ρ, ϕ) = E II� II(ρ, ϕ). (7)

Separating variables gives azimuthal and radial equations as

F ′′II(ϕ) = −μ2 F II(ϕ) (8)

R′′II(ρ) + 2m

h̄2

[
E II + V0

(ρ − ρ0) + aT
− h̄2

2m

μ2

ρ2

]
RII(ρ) = 0.

(9)

From the radial equation, the effective potential for region II
can be written as

Veff(ρ) = − V0

(ρ − ρ0) + aT
+ h̄2

2m

μ2

ρ2
. (10)

Keeping ξ = ρ − ρ0 and simplifying the above equation, we
get the effective potential in the form given by the equation

Veff(ξ) = h̄

2m

{
λ′3

1

λ2
1ρ

4
0 a3

T[2ξ + λ′
1

λ1
]

− λ′2
1

λ1ρ
4
0 a3

T

+ λ′′
1

ρ4
0 a3

T

}
(11)

where
λ1 = −2a4ρ4

0 + 3μ2a3
T (12)

λ′
1 = −a4ρ4

0 aT + μ2a3
Tρ0 (13)

λ′′
1 = −2a4ρ4

0 a2
T + μ2a3

Tρ2
0 . (14)

From equation (11) we can see a shift in the minimum of the
potential, which is due to the shift is the equilibrium axis due
to dislocation. The wavefunction of region II can be written as

� II(ρ, ϕ) =
∑
m=0

RII
m[Cmeiμϕ + Dme−iμϕ]. (15)

Similarly, proceeding to region III, the Schrödinger
equation can be written as

− h̄2

2m

[
1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+ 1

ρ2

∂2

∂ϕ2

]
� III(ρ, ϕ)

− V0

(ρ − ρ0) + aT
� III(ρ, ϕ) = E III� III(ρ, ϕ). (16)

Separating variables gives azimuthal and radial equations as

F ′′III(ϕ) = −μ2 F III(ϕ) (17)

R′′III(ρ) + 2m

h̄2

[
E III + V0

(ρ − ρ0) + aT
+ h̄2

2m

μ2

ρ2

]
RIII(ρ) = 0.

(18)
From the radial equation, the effective potential for region III
can be written as

Veff(ρ) = − V0

(ρ − ρ0) + aT
− h̄2

2m

μ2

ρ2
(19)

which, upon simplification,

Veff(ξ) = h̄

2m

{
λ′3

1

λ2
2ρ

4
0 a3

T[2ξ + λ′
2

λ2
]

− λ′2
2

λ2ρ
4
0 a3

T

+ λ′′
2

ρ4
0 a3

T

}
(20)

where
λ2 = −2a4ρ4

0 − 3μ2a3
T (21)

λ′
2 = −a4ρ4

0 aT − μ2a3
Tρ0 (22)

λ′′
2 = −2a4ρ4

0 a2
T − μ2a3

Tρ2
0 . (23)

The above equation shows a shift in the potential minimum.
Figure 2 shows the potential shift in this region. The
wavefunction of region III can be written as

� III(ρ, ϕ) =
∑
m=0

RIII
m [Gmeiμϕ + Hme−iμϕ]. (24)

2
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Table 1. The change in energy (in eV) for various materials for electrons channeling along the (110) direction at different incident energies
for a value of ρ0 = 0.5 × 10−7 m.

50 MeV 20 MeV 10 MeV

Straight
channel

Dislocation-
affected
channel

Straight
channel

Dislocation-
affected
channel

Straight
channel

Dislocation-
affected
channel

Si 2.83 ×10−3 2.861 ×10−3 0.93 ×10−3 0.942 ×10−3 0.476 ×10−3 0.481 ×10−3

Cu 3.257 ×10−3 3.293 ×10−3 1.3 ×10−3 1.31 ×10−3 0.651 ×10−3 0.658 ×10−3

Figure 2. The shift in potential due to dislocations.

The fourth region is the perfect channel. There will be
only a transmitted wave in this region and the wavefunction is
written as

� IV(x, z) = X IV
n Ineikn z. (25)

Now we proceed to find the reflection and transmission
coefficients. The boundary conditions across the three
boundaries are given by

� I|z=0 = � II|ϕ=0 and
∂� I

∂z

∣∣∣∣
z=0

= 1

ρ0

∂� II

∂ϕ

∣∣∣∣
ϕ=0
(26)

� II|ϕ=ϕ0 = � III|ϕ=0 and

∂� II

∂ϕ

∣∣∣∣
ϕ=ϕ0

= ∂� III

∂ϕ

∣∣∣∣
ϕ=0

(27)

� III|ϕ=ϕ0 = � IV|z=t and

1

ρ0

∂� III

∂ϕ

∣∣∣∣
ϕ=ϕ0

= ∂� IV

∂z

∣∣∣∣
z=t

.
(28)

From the above boundary conditions, we get the reflection and
transmission coefficients as

|R|2 = (−μ2 + k2ρ2
0 )

2 sin2(2μϕ0)

4k2μ2ρ2
0 cos2(2μϕ0) + (μ2 + k2ρ2

0 )
2 sin2(2μϕ0)

(29)

|T |2 = 4k2μ2ρ2
0μ

2

4k2μ2ρ2
0 cos2(2μϕ0) + (μ2 + k2ρ2

0 )
2 sin2(2μϕ0)

.

(30)
These give the dechanneling and channeling probabilities,

respectively. The variation of these coefficients with the value
of ρ0 and incident energy E is given in equations (3) and (4).

The eigenspectrum of electron channeling is given by [14]

|En| = V 2
0

2h̄2(n + δn)2
(31)

δn = 2aT/aTF (32)

aT =
√

a2
TF + u2 (33)

where u2 is the mean-square vibrational amplitude. The
additional centrifugal force due to the dislocation changes the
spectrum. This change in energy due to channeling of electrons
in a dislocation-affected channel for various materials and
various energies is given in table 1 and compared with that in
a straight channel for a value of ρ0 = 0.5 × 10−7 m.

3. Spectral distribution of radiation intensity

Now we consider the effect of dislocation on the spectral
distribution of the radiation intensity. The probability of
transition from an initial state (i) to a final state (f) of
the electron per unit time is determined by the well-known
formula [15]

Wfi = 4π2e2

h̄V

∑
�q

|�q|−1|�αfi · �ek |2δ(ωfi − ω) (34)

where V is the volume of the system, and �q and �ek are
the wavevector and polarization vectors of a quantum of
electromagnetic field:

h̄ωfi = Eni − Enf. (35)

The matrix elements �αfi are given by

�αfi = δσizσfz δpiy,pfy+h̄qy
�Dfi (36)

�Dfi = −ixfi(fi, 0, qxβ) (37)

xfi =
∫ −∞

∞
x Snf Ef(x)Sni Ei(x) dx (38)

where snE are oscillatory wavefunctions which obey the
Schrödinger equation given by

[
− h̄2

2E

d2

dx2
+ U(x)

]
SE (x) = E SE (x). (39)

Let us define a vector of polarization �e1 in the plane having the
wavevector �q and the z axis and a vector �e2⊥�e1 in the plane
having the axes x and y. If ϕ and θ are the azimuth and polar
angle of the wavevector �q

�e1 = (cos θ cos ϕ, cos θ sin ϕ,− sin θ) (40)

�e2 = (− sin ϕ, cos ϕ, 0). (41)

3
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Figure 3. Variation of the reflection coefficient/dechanneling
probability with ρ0 and incident energy E of the electron.

The summation in equation (34) is written in the integral form
as

Wfi = e2

2π h̄

∫
(|�αfi · �e1|2 +|�αfi · �e2|2)|�q|−1|δ(ωfi −ω) d�q. (42)

Solving, we get the transmission probabilities as

dWfi

d
= e2x2

fi
3
fi

2π h̄(1 − β cos θ)4

× [(1 − β cos θ)2 − (1 − β2) sin2 θ cos2 ϕ] (43)

dWfi

dω
= x2

fi
2
fi

e2

2h̄β3

×
[

1 + β2 − 2(1 + β)
ω

ω0fi
+ 2(1 + β)2

(
ω

ω0fi

)2]
(44)

dIfi

d
= e2x2

fi
3
fi

2π(1 − β cos θ)5

× [(1 − β cos θ)2 − (1 − β2) sin2 θ cos2 ϕ] (45)
dIfi

dω
= e2x2

fi
2
fi

ω

2β3

×
[

1 + β2 − 2(1 + β)
ω

ω0fi
+ 2(1 + β)2

(
ω

ω0fi

)2]
(46)

where
ω0fi ≈ 2fiγ

2. (47)

The spectral intensity of radiation of a channeled electron in the
case of a straight and a dislocation-affected channel are plotted
in figures 5 and 6 with

s = 3e2x2
fi

8β3γ 2
. (48)

It is found that the change in the effective potential and
frequency of oscillations proportionally changes the spectral
distribution of radiation intensity.

4. Results and discussions

The effects of centrifugal force developed due to the distortions
in the channels have been discussed. The transverse potential

Figure 4. Variation of the transmission coefficient/channeling
probability with ρ0 and incident energy E of the electron.

Figure 5. Spectral distribution of radiation intensity.

in the perfect channel and the two regions of dislocation-
affected channels are found. This centrifugal force causes a
shift in the potential minima and is plotted in figure 2.

The curvature of the channel induces a shift in the
equilibrium axis which changes the frequency in both the
dislocation-affected channels. The effects of the change in
frequency is reflected in the spectral distribution of radiation
intensity. The energy change is calculated for various materials
and various incident energies of the electrons and is given in
table 1. A comparison with the straight channel values is also
made here.

The continuity of wavefunctions and their derivatives is
used at the three boundaries. The reflection and transmission
coefficients are found using these boundary conditions
which are the dechanneling and channeling probabilities,
respectively. Figures 3 and 4 show the variation of these
dechanneling and channeling probabilities respectively with ρ0

and incident energy E of the electron. The spectral distribution
of radiation intensity is calculated and compared with that of
the straight channel and is plotted in figures 5 and 6.

5. Conclusions

We have developed a quantum mechanical model for the effects
of dislocations on electron channeling. The shift in potential
minima due to the dislocation in the channel is found. The
corresponding change in energy is calculated and compared
with that of the straight channel. We find a fractional change in

4



J. Phys.: Condens. Matter 21 (2009) 075401 J George and A P Pathak

Figure 6. Spectral distribution of radiation intensity, showing clearly
the fractional change due to the effects of dislocations.

the parameters due to effects of dislocations. The channeling
and dechanneling probabilities are found using the boundary
conditions across the boundaries. The spectral distribution of
radiation intensity is calculated and compared with that of the
straight channel.
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